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Isoperimetric inequalities src obtained for bounding from below and above the geometric 
torsional stiffness of a prismatic bar having a simply connected convex cross-section and 
subjected to steady creep which is characterized by a power law. 

1. Let D be the simply connected region representing the cross-section of a prismatic 
bar, bounded by the contour C. It is known [l] that the steady creep problem of a bar in tor- 
sion may be reduced to the solution of a differential equation for the stress function F = 
= F(%, y) in D: 

F (2, y) = 0 on c (1.21 

Here o is the angular displacement rate per unit length of bar. For a power law relation- 
ship, we have 

h (T) = Krm-1 (1.3) 
where m and B are cOnstanta characteristic of a given material: m is the exponent of the 
creep law while B is expressible in terms of m and the creep coefficient 8,. The exponent 
m is greater than unity. For a power law, the stress function may be in the form 

h-(+)p*, p+- (O<P<l) (1.4) 
1 

where \I, = y (x, y) is independent of o and B. Let M denote the torsional moment, then from 
statics considerations, we have 

Here D may be called the geometric stiffness of the bar. For a fixed p, this quantity 
will be a unction of the shape and dimensions of the cross-section only. With the aid of r” 
(1.1) to (1.4), we obtain the following Eq. for y: 

(1.5) 

The boundary condition is 
Y=O one (1.6) 

2. Let f= f(x, y) be a continuous function with continuous first derivatives in D satisfy- 
ing the condition 

f=OonC (2.1) 
but otherwise arbitrary. Taking note of (l.S), let us consider and transform the following Ex- 
pression: 

744 
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= “U,(IgradYI II (l-l*)IP Yx) + fv ( 1 grad Y fl-p)@ Y,,)] do dy- (fx=%) 
D 

“. 

sS[ 

a (f 1 grad Y I(l-+)‘P Yx) 
- ax + a (f 1 grad Y l(t--y)‘k Yu) 

ay 1 dx dy 

D 

The last integral, upon being transformed into a line integral around a curve vanishes 
by virtue of (Xl), leading to 

2~~fdzlh=~~~j~(lgradYl(1-~)~~Y~~+f~(lgradY((1-~)~‘Y~)ldrdy (2.2) 

Since $(z, y) is a p&c& case of the function fk, y), we obtain with the aid of (2.2) 

D, = 2 SS Y dx dy = 1 grad Y j@+P)‘P dx dy (2.3) 

By employing successivelyThe Cauchy and Hiilder inequalities we obtain from (2.2) 
IS a 

2 
\l 

fdxdy= ‘[f,(IgradYI(l-~)lrY~)+f,( IgradY1(13”)1’Y~)ld”dy( SS 
D D 

< 1s ( I grad Y IS(~+)‘P ~‘,a + 1 grad Y ~(1-)L)‘pYy8)“s (fx? + f,“)t” dx dy = 

D 

(l+P)/P dzdy I grad f I(l+p)/p dx dy 
P/(l+Y) 

d (2.4) 
D 

Raising both sides of (2.4) to the (1 + @ power and taking into account (2.3), we obtain 

Dp&21*‘(~~fdxdy)1’p( ~~IgradfI(l+p)lp dzdy)* (2.5) 
D D 

The equality in (2.5) is obtained when fk, y) is proportional to q(x, y), satisfying (1.5). 

8. Assume that D is a convex region, and let A be the area of D while L is its perime- 
ter. 

To obtain the lower bound of the quantity DP we appl 
The set of those interior points of the convex region 6 

the method of paper [il. 
whose shortest distance from the 

boundary of D is equal to the specified number t is a convex carve called the interior paral- 
lel at the distance t. We denote its length by L(t) and the area which it encloses by A(t). 
For our purposes it is sufficient to consider the case of a convex polygon, since extension 
from this to the general statement has already been described [3]. Let p be the radius of the 
largest circle inscribed in D. The functions A(t) and L;(t) are defined in the interval 0 ,< t\< 
,< p; they are strictly decreasing functions, and it is clear that 

A (0) = A, A (p) = 0, L (0) = L, A’ (t) = -L (t), L’ (t) ( 0 (3.1) 
Let us take as our functions f(r, y) in (2.5) those functions whose datam levels are in- 

terior parallels of the region D. For each functions 

f (x9 Y) = g (1) (3.2) 
and relations (2.5) and (2.1), respectively, become 

0 0 

D, > 2’+’ (sg (t) L(t) dt)l+P (1 [g’ (t)](l+Y)‘Y L (t) d+” 

0 0 

g (0) = 0 
Mahing use of (3.14) and integrating by parts, we obtain, in view of (3.4). 

P 

S 
c P 

0 
g(t)L(t)dl=+ A’(t) dt = sg’(t) A (t)dt 

0 0 

(3.4) 
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We now rewrite (3.3) in the form 

The best choice of the function under consideration in (3.5) will be obtained if we set 
.4(t) P 

g’(t)= L(r) [ 1 
For ench a choice in (3.5). we obtain 

D, >, ii!‘+’ 

Let us evaluate the integral in (3.7). We begin by noting that, in view of (3.1.4): 

s p 1‘4 WI’+” & = s[ 1 p A (f) 

o [LWl’ -o m 
l+P A’ @) & 

(3.6) 

(3.7) 

(3.8) 

Note also that the inequality 

A 0) < (P - r) L U) (3.9) 

follows from (3.1.4) by taking into account that L(t) is a decreasing function. Then integra- 
ting (3.8) by parta and utilizing (3.9), (3.1.1) and (3.1.5), we obtain 

i A*+!’ 
C(f)df>-- 

2+lr Ll+" (3.10) 
0 

Hence, we obtain with the aid of (3.7) 

2l+p A2+p 

Dp>- - 2 + P Ll+p 
(3.11) 

4. To obtain an upper bound for DP we employ the method of [p. We subdivide the poly- 
~n~r;~;f.$t~~s~;;S oST . . . . on into subrqgione D,, D,, . . . . Dn in the following 

I 1 there exists a pomt q on o, such that the distance from p 
to q is leas than the distance from p to any other point on the bouudary of D. 

The following facts are then evident concerning the shapea of the enbregions: 
a) A subregion Di may be enclosed in a rectangle with base a, and height p. 
b) Any papendicular to a, divides the boundary of D, at no more than two 9oints. 
Now let IL = I&, y) be a fuuction which maximizes the functional on the right-hand aide 

of (2.5). Then, by virtue of the Hglder inequality, we obtain 

(4.1) 

(ux = au / az, uy=au Jay) 
Assume now, without the lose of generality, that the side a, lies on the z-axia and that 

its ends are at (0, 0) end (or, 0). From properties (a) end (b) above, it ia clear that the boun- 
dary of D, may be given by Eqs. 

y = 0, Y - ffb) (0 < 2 < ad (4.2) 

Below, we will need the following relation, obtained with the aid of the Hglder inequality: 

(jy(T)“‘)liy. =(j(l--l).~(I)dq+P~ 
0 0 

( (j (s _ ql+p d’) (ij (v*(r)]“+“” dq =& (i pqqj(l+~)~w) 
0 0 0 
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where U(T) and U’(T) are continuous on (0, a) with u(O) = 0. Hence, we have 

(ju(r)drjltP (~lu.ol”+‘“‘d~)-~~~ 
Makfng use of the ~&lder inequalit!es and (4.3). we obtain 

(4.3) 

0 0 0 
ai 9 f,(x) 

<$$ 5 [ft (x)]2+Pdx = 2l+’ 3 dx 1 y’+Fdy = 2’+’ 1”” dxdy 

0 0 0 

Here t = t(p) is the smallest distance from the variable point p e D’to the boundary of D. 
Upon combining, we obtain 

D, < Z1+’ SS ’ t’+“dxdy (4.5) 
D 

From (4.4), we have 

pt' 
oi 46 

*s 2+p I 
.O 

[fl (x)1’+” dx < -$$ p’+” \ jr (x) dx = $$ pl+p 1s dxdy 

0 
Di 

Upon combining we obtain an upper bound for Dp in terms of p and A 

21+p 

%<2+pp 
l+pA (4.6) 

Wow, we obtain au upper bouud for DP in terms of A and L. If D is a convex polygon, 
then L(t) is piecewise linear, decreasing and convex from above [5]. Clearly, there exists 
a linear function h(t) = L -at b > 0) such that 

P P 
l . 

A=lL(t)dt=hb(t)dt (4.7) 

u 0 

It is also clear that 

a (9) >/ L (P) > 0 (4.8) 

and there exists a /!f(O < B < p) such that 

L (0 - x 0) > 0 (0 < t < 8) L (0 -k(t)<0 (B d t d P) 
Whence we have 

‘: P 

s 

c 
[r. (t) - h (t)] t’+” dt < 

5 
[L(t) -h (t)] p’+Pdt + 

s 
[L(t) -h(t)] p’+” dt = 0 

0 0 B 

': P 

s 
L (t) tl'p dt < S l.(t) tl+Y dt (4.9) 

Utilizing (4.5) and (4.9) au! the expression for the area 
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_l=+[b(n)-:-h(p)l p = (L-qp 

we obtain 

22+” ,&p 
P 

D,--.-- 
2+IL Ll+p 

0 

L 2+P (L _ I/* rp)24 Ilrpw (2p)2ilLL 

2-icL Ll+l* 
z- z+p [(l-s)2+p +rgg$-y (4.10) 

Let us examine the expression in the square brackets in (4.10). Introduce the notation: 
ap/2L y 2 + p= v (2 <V < 3). In view of (4.8). we haveX(p)=L -ap>,O. Hence,ap/L-< 
4 1, so that 0 < y\< Yr. Denoting the expression in square brackets in (4.10) by cp (y, v), we 
may now write 

cp (7, v) = (I - y)” + Yv / (i + v) - ‘/a 
It can be shown by the usual methods of analysis that the function q(y, v) is positive in 

the region 0 < y\< %, 2 < v < 3. Hence, the expression on the right-hand side of (4.10) is 
negative. Consequently, the following inequality holds 

(4.11) 

The isoperimetric inequalities (3.11), (4.5), (4.6) and (4.11), obtained above, apparently 
have not yet been utilized in the literature. In the particular case when stress distribution 
in the bar under torsion is elastic @L= l), Dp is obtainable by maximizing the functional 

in the right-hand side of (2.5) and coincides with the torsional stiffness of a homogeneous, 
isotropic, elastic, prismatic bar, so that the results obtained here coincide with the results 
in [2 and 41. 
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